Виды технических газов и область их применения

Нефтяной газ, природный газ и пропанобутановая смесь для газовой сварки

Пиролизный газ представляет собой смесь горючих газов, образующихся при распаде нефти, мазута и других нефтепродуктов при воздействии на них высоких температур. В состав пиролизного газа входят сернистые соединения, которые вызывают коррозию мундштуков в газовых сварочных горелках. Поэтому, перед применением этот газ проходит тщательную очистку.

Нефтяной газ – является побочным продуктом нефтеперерабатывающих предприятий. Он используется, в основном, для резки и сварки металлов малой толщины и для сварки цветных металлов.

Пропанобутановые смеси являются бесцветными смесями, не имеющими запаха. Состоят они из пропана С3Н8 и бутана С4Н10. Эта смесь обладает наибольшей теплотворной способностью, т.е., при её сгорании выделяется наибольшее количество теплоты.

ООО “Сектор газа” г.Уфа предлагает технические газы: кислород, пропан, углекислота, аргон, азот, ацетилен, смесь газовую, узнать подробнее.

История открытия

История открытия аргона начинается в 1785 году, когда английский физик и химик Генри Кавендиш, изучая состав воздуха, решил установить, весь ли азот воздуха окисляется.

Дальнейшая история открытия аргона связана с именем Рэлея, который несколько лет посвятил исследованиям плотности газов, особенно азота. 

У известного уже в то время английского химика Уильяма Рамзая также не было готового ответа, но он предложил Рэлею своё сотрудничество.

Интуиция побудила Рамзая предположить, что азот воздуха содержит примеси неизвестного и более тяжёлого газа, а Дьюар обратил внимание Рэлея на описание старинных опытов Кавендиша (которые уже были к этому времени опубликованы). 

Большую роль в изучении нового газа сыграл спектральный анализ. Спектр выделенного из воздуха газа с его характерными оранжевыми, синими и зелёными линиями резко отличался от спектров уже известных газов. Уильям Крукс, один из виднейших спектроскопистов того времени, насчитал в его спектре почти 200 линий. Уровень развития спектрального анализа на то время не дал возможности определить, одному или нескольким элементам принадлежал наблюдаемый спектр. Несколько лет спустя выяснилось, что Рамзай и Рэлей держали в своих руках не одного незнакомца, а нескольких — целую плеяду инертных газов.

7 августа 1894 года в Оксфорде, на собрании Британской ассоциации физиков, химиков и естествоиспытателей, было сделано сообщение об открытии нового элемента, который был назван аргоном.

Где применяется аргон?

Аргон получил большое распространение в промышленности. Инертные свойства этого газа особенно востребованы в различных производственных процессах, где необходимо вытеснить один из самых активных элементов – кислород. Использование аргона очень дёшево, в сравнении с другими инертными летучими веществами, поэтому газ незаменим в том случае, когда требуется защитная среда при сваривании металлов, а также вытеснение влаги и кислорода в ёмкостях, где хранятся пищевые продукты.

Наполнение колб ламп  накаливания инертным газом, позволяет значительно увеличить ресурс работы осветительного прибора. Кроме повышенного срока использования такие элементы обладают большей яркостью. Используется инертный газ и при производстве люминесцентных ламп. Применение аргона позволяет облегчить запуск разряда электрической дуги, а также значительно увеличить ресурс электродов.

При изготовлении стеклопакетов, инертным газом заполняются полости между стёклами, что позволяет значительно улучшить теплоизоляционные свойства. Учитывая тот факт, что аргон является абсолютно прозрачным, использование его никак не ограниченно даже при изготовлении многослойных конструкций.

Инертный газ аргон используется также в установках плазменной резки металлов. Преимущество использования этого газа заключается в том, что для возникновения дуги не требуется слишком высокого напряжения, поэтому такие установки могут иметь очень простую конструкцию. При генерации плазмы с использованием аргона образуется минимальное количество вредных газообразных веществ во время выполнения резки, поэтому этот метод идеально подходит для ручных приборов.

Благодаря возможности образовывать плазму при относительно невысоком напряжении, этот благородный газ используется в медицине для проведения аргоновой коагуляции. Такой метод успешно используется для удаления новообразований, а также для остановки кровотечений.

Аргон применяется и в химической промышленности. Благодаря отсутствию взаимодействия с другими элементами этот газ используется для получения сверхчистых веществ, а также для их анализа. В металлургической промышленности благородный газ позволяет обрабатывать такие металлы, как: титан, тантал, ниобий, бериллий, цирконий и др. Кроме этого, газ используется для перемешивания расплавленных веществ и снижения окисления хрома при производстве хромированной стали.

Виды газов

Способность таких газов длительно поддерживать самостоятельный процесс горения позволила использовать их в качестве бытового и промышленного топлива – от квартирной колонки автономного отопления до котлов и турбин тепловых электростанций.

Другие свойства горючих газов и их смесей сделали возможным применение в качестве агентов для холодильного оборудования, в качестве исходного сырья для синтеза большинства видов пластмасс, пластиков, жидких видов топлива, растворителей и других товарных продуктов химической промышленности.

В список используемых горючих природных и получаемых по технологиям промышленного синтеза, газов входят:

Природный газ, который состоит в различных пропорциях (в зависимости от места добычи) из смеси метана, пропана с бутанами, гексана, этана, диоксида углерода, азота.

Природный газ – это продукт биохимического разложения органических материалов в толще земли. Большинство месторождений располагаются на глубинах меньше 1,5 км. Главный компонент – метан с примесями пропана, бутана.

  • Газовый конденсат, попутный углеводородный газ с нефтегазовых месторождений, предприятий химико-технологической переработки нефти, отличающийся непостоянным составом, в котором преобладает наличие этана, пропана; а также присутствуют легкие, тяжелые нефтяные углеводородные соединения, включая керосиновые, бензиновые фракции.
  • Коксовый газ, состоящий из смеси метана, водорода, окиси углерода.
  • Аммиак.
  • Водород.
  • Сероводород.
  • Оксид углерода.
  • Метан, часто называемый болотным газом.
  • Пропан.
  • Бутан.
  • Изобутан.
  • Бытовая газовая смесь на основе пропана, бутана
  • Ацетилен, используемый при производстве работ по газовой резке металлических конструкций, металлолома.
  • Этилен, необходимый для производства полиэтилена.
  • Пропилен.
  • Оксид этилена.
  • Бутадиен.
  • Гексан.
  • Пентан.

Безопасное использование таких газов характерно трубопроводным поступлением в зону горения, что реализовано в варочном и отопительном оборудовании, газовых резаках, а также при плановом горении газовых фонтанов при разведке, на промышленных площадках месторождений.

Химические свойства

Пока известны только 2 химических соединения аргона — гидрофторид аргона и CU(Ar)O, которые существуют при очень низких температурах. Кроме того, аргон образует эксимерные молекулы, то есть молекулы, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Есть основания считать, что исключительно нестойкое соединение Hg—Ar, образующееся в электрическом разряде, — это подлинно химическое (валентное) соединение. Не исключено, что будут получены другие валентные соединения аргона с фтором и кислородом, которые тоже должны быть крайне неустойчивыми. Например, при электрическом возбуждении смеси аргона и хлора возможна газофазная реакция с образованием ArCl.

Также со многими веществами, между молекулами которых действуют водородные связи (водой, фенолом, гидрохиноном и другими), образует соединения включения (клатраты), где атом аргона, как своего рода «гость», находится в полости, образованной в кристаллической решётке молекулами вещества-хозяина.

Соединение CU(Ar)O получено из соединения урана с углеродом и кислородом CUO. Вероятно существование соединений со связями Ar-Si и Ar-C: FArSiF3 и FArCCH.

Способы получения аргона

Аргон является третьим по распространённости газом в земной атмосфере, поэтому наиболее логичным способом является добывание его из воздуха. Для этой цели используются специальные низкотемпературные ректификационные аппараты.

Процесс отделения инертного вещества осуществляется в такой последовательности:

  • Воздух очищается от пыли и подвергается сжатию до жидкого состояния.
  • Жидкий воздух, состоящий преимущественно из кислорода, азота и аргона подвергается ректификации.
  • После отделения азота, из получившейся при сжатии жидкости, осуществляется доочистка кислородно-аргоновой смеси.

Температура кипения аргона в ректификационной установке составляет минус 185,3˚С. При этом, кислород кипит при температуре на 3 градуса выше, а азот – на 13˚С ниже этого показателя. По причине небольшого отличия в переходе из одного агрегатного состояния в другое, на первом этапе отделения аргона смесь содержит большое количество жидкого кислорода. На заключительной стадии получения аргона производится отделение благородного газа из кислородно-аргоновой смеси. Процесс доочистки, как правило, осуществляется с помощью электролитического водорода. В результате реакции в контактном аппарате с кислородом образуется водяной пар, который затем утилизируется через влагоотделитель.

Аргон может быть получен не только из атмосферного воздуха. При некоторых производственных процессах этот газ может являться сопутствующим продуктом. Например, при производстве аммиака, аргон является примесью азота и является совершенно ненужным элементом, поэтому полученный таким образом газ имеет очень низкую себестоимость, в сравнении с криогенным аргоном.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий